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SUMMARY 
The numerical analysis of plane and axially symmetric jet flows of an incompressible inviscid fluid is treated. 
A new formulation of the variational inequality type is developed from the variational principle associated 
with jet problems. A successive approximation method is formulated by the combined use of variational 
inequality and the finite element method. Numerical examples based on the iterative method are presented. 
The results obtained agree well with those by other methods. 
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1. INTRODUCTION 

This paper considers the jet flow of an incompressible inviscid fluid which is moving in a nozzle 
and is exiting from a prescribed small opening. As is well known, the jet problem is difficult to 
treat either analytically or numerically because the location of the free boundary and the speed of 
the fluid on the free boundary are not known a priori. 

Theoretical aspects (existence, uniqueness, etc.) for two-dimensional and axially symmetric jet 
flows have been extensively studied in past years. Alt et aZ.'v2 and Friedman3 have recently 
established existence and uniquess theorems for axially symmetric and two-dimensional asym- 
metric jet flows under rather weaker assumptions on the nozzle by formulating as variational 
problems with parameters. Their results naturally apply to plane symmetric jet flows. We 
summarize some of their results relevant to our analysis in Section 2. 

Various numerical methods for jet flows have also been developed; excellent surveys are given 
in the monographs of Gilbarg4 and Gurevich.5 Recently, Aitchison has reported a method for the 
numerical solutions of a plane symmetric jet flow6 and plane and axially symmetric finite cavity 
flows.7 He has formulated the problem as the minimization of a functional over a variable 
domain, which has been solved by the method of variable finite elements. 

In this paper a new numerical algorithm for plane and axially symmetric jet flows is proposed. 
On the basis of the results of References 1-3, an alternative formulation of the variational 
inequality type is developed by taking the first variation of the functional at the stationary point. 
The variational inequality formulation naturally yields successive approximations which can be 
implemented by the conventional finite element method, though the domain of integration is 
varying at each iteration. 
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2. PLANE A N D  AXIALLY SYMMETRIC JET FLOWS 

2.1. Statement of problems 

We consider the plane (or axially) symmetric flow of an incompressible inviscid fluid issuing 
from the prescribed small opening of a nozzle. The flow configuration is shown in Figure 1, where 
N is the nozzle, r is the free boundary and A = (0, 1). We denote by R the flow domain bounded 
by N, r and the x-axis. 

For a given flux Q, the plane symmetric jet problem is to find a streamfunction u and a free 
boundary r such that u satisfies 

subject to 
u(x, 0)= 0 for - co < x < co, 

u = Q  o n N a n d r ,  

au 
a n  
- = A  o n r ,  

where n is the outward normal to r and A is an unknown constant to be determined as a part of 
the solution. 

It is assumed that the nozzle satisfies all the conditions described in Alt et al.'. Then the 
parameter A can be assumed as A >  Q. 

The axially symmetric jet problem is described by replacing ( 1 )  and (4) with 

and 

respectively. For the axially symmetric flow it is assumed that 1 >, 2Q. 

Figure 1. The flow configuration (The truncated domain a,,, is presented by the region bounded by dashed lines.) 
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2.2. Associated variational problems with a parameter 

For the variational formulation associated with the jet problem we need a truncated domain 
Q,,,R with sufficiently large ,u and R bounded by ABCDEF as shown in Figure 1. In the plane 
symmetric case we consider the variational problem of minimizing a functional 

J,(v) = Jap,R IVU - lI{,<p)elZ dxdy (e = (0,1)) (7) 

consists of functions v in H' (Q,,, R )  over a class of admissible functions K,,, R ,  where K,,, 
satisfying 

0 < v < Q in 

v = u P  on.&, 

v = Q  o n A F ,  

v =  min(ly, Q} on EF. (1 1) 

Here I,, < Q )  is the indicator function defined by 

H'(Q,,, R )  is the Sobolev space (of order one) of functions v on Q,,, R ,  and up on a (the part of the 
boundaries consisting of AB, BC, CD and DE) is defined by 

Q on AB and BC, 

u,,= { Qyly,, on CD, 
0 on DE. 

Functional (7) may be written as a functional over a variable domain, 

IVV - 1eI'dxdy for V E K , , , ~ ,  

since v E K,,, takes the constant value Q when v(x, y )  c Q is not satisfied, and it is noted that 

Vv = 0 a.e. in ( v  = Q}. (15) 

Alt et al.'. 2, have shown that the functional J ,  has a minimizer for any 1 and that for some 
1 = A(p, R) the minimizer solves the jet problem in the truncated domain Q,,, R .  We summarize 
some of their results relevant to our subsequent analysis. 

1. The minimization problem (7) has a unique solution u = u, in K,,, such that 

V2u = 0 in a,, (16) 

-=1 au on r,, 
an (17) 

where S Z ,  is the bounded domain in satisfying u < Q. The free boundary r, is 
analytic and is given by x = k,( y). The starting point of the free boundary r, is denoted by 
A, = (x,, l), where x, = k,(l) (see Figure 1). 
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2. If 1 > Q and A - Q is small enough then x, > 0 and 

3. If I ,  > I ,  then x,, < xA2 and rAl lies below rd2. 
4. If we denote by A* the supremum of parameters A satisfying x, > 0, then (u,*, r,,, A*) is 

the unique solution of the jet problem in the truncated domain Q , , R  such that the free 
boundary r,, initiates at A = (0, 1) and its initial direction coincides with that of the nozzle 
at A. 

Thus the plane symmetric jet problem in Rp,R is equivalent to the problem of finding the 
minimizer u,* of the functional J ,  and a positive parameter A*. Alt et al.'.' have shown that the 
desired solution of the jet problem in the domain R can be obtained by letting R + co and then 
p-+ co. 

For the numerical implementation, however, minimization of the functional J ,  given by (7) is 
rather inconvenient since 1, contains the term I , ,  < Q). In the following we give an alternative 
formulation which is obtained by taking the first variation of J ,  given by (14) at the stationary 
point. 

= Ti be the associated free 
boundary. In order to obtain the first variation of J ,  over a variable domain, following Courant 
and Hilbert' we introduce the family of transformations on RF, 

(19) 

depending on a parameter E(O d E d 1). We assume that this transformation is one-to-one 
continuously differentiable and reduces to the identity transformation for E = 0. For any point 
(x, y) E r, in particular, x * and y * are defined by 

For brevity of description let u = u, be a minimizer of J ,  and 

x* = X(x, y; E ) ,  y* = Y(x,  y; E ) ,  

x* = x + canx, y* = y + cany (20) 
for a test function a given on r, where n = (nxr n,,) is the outward normal to r. Since r is analytic, 
both an, and an,, are also test functions. The terms can, and cany in (20) can be interpreted as the 
variations 6x and 6y on r in Reference 8 respectively. 

We assign to the point (x, y )  in the old co-ordinates a new function value 

u*(x, y; 4 = 4x9 Y) + Ei(X, Y )  (21) 

for a test function [ given on R,,R.  For any point (x, y ) ~ r  we define u* by 

u*(x*, y*; E )  = u(x, y:l. 

Substitution of (20) into (22), to the first order in E ,  yields 

In obtaining (23), relation (21) has been used. 
In line with Courant and Hilbert it can be shown that the first variation 6 J ,  of (14) is given by 

( -  2V'u)idxdy + E 2(Vu - Le) enids + E IVu - Lel*ads (24) 

for all test functions i, where the first term on the right-hand side is taken in the distributional 
sense. 

s sr sr 6 J ,  = E 

Q , , R ~ { U < Q }  
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By Green’s theorem, (24) becomes 

Noting that the condition Ulr = Q implies (du/ay) ds = -(du/an)dx on I-, substituting (17) and (23) 
into (25) yeilds 

~ V U  .VCdxdy - E 21Cds. (26) s I 6 J ,  = E 

Q”, R n ( u  < Q )  

Since K,,, is closed and convex, the fact that u is a minimizer of J A  implies 

6 J ,  2 0. (27) 
Putting [ = u - u for any u E K,,, 
rewritten as 

and taking into consideration (15), inequality (27) can be 

VU .V(U - u)dxdy 2 ;1(u - u)ds for any U E K , , . .  (28) s,. I 
It is also to be noted that the solution of inequality problem (28) satisfies (16), (17) and (18). 
In the above formulation the integration on the left-hand side can be formally regarded as the 

variation of J ,  for a fixed domain O,,, ., while that on the right-hand side can be ascribed to the 
variation of the domain. The fact that the variation of J A  is separated into two parts enables us to 
carry out numerical calculations by using the conventional finite element method. 

The inequality problem thus obtained actually falls within the scope of variational inequality 
problems. However, the variational inequality type of formulation (28) differs from those 
discussed in References 9-13 in that it contains the term represented by the line integral on the 
unknown free boundary. 

For the axially symmetric jet problem we work with the functional 

and a class of admissible functions u E K,,, given by replacing (1 1) with 

v = min($;lyZ, Q }  on EF. (30) 

In the exactly same way, the minimization problem given by (29) is reducible to the variational 
inequality problem such that the minimizer u satisfies 

- V u  *V(u - u)dxdy 2 ;1(u - u)ds for any V E K , , , . .  (31) 

In obtaining (31), the family of transformations (20) is replaced by 

n x  

Y 
x* = x + &a--, 

n 

Y 
y * = y + &U 2 

for a test function u given on r. 
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The solution u = u, of the inequality problem (31) satisfies 

Lu=O ina , ,  

1 au 

Y aY 
--->I on y =  l ,O<x<.x, .  

(33) 

(34) 

(35) 

3. NUMERICAL ALGORITHM 

In this section a numerical algorithm for solving the jet problem in the truncated domain is 
presented which is based on the variational inequality formulation obtained in Section 2. The 
algorithm consists of two parts: one is for finding the location of the free boundary r, for a given I 
and the other is for determining the value of I*  which ensures that the free boundary detaches 
from the nozzle. 

Since the formulation contains the line integral on the unknown free boundary, the com- 
putational domain varies at each iteration. However, the algorithm can be implemented by using 
the conventional finite element method, in contrast with ,4itchison6* ' who used the method of 
variable finite elements. 

For brevity let us introduce two functions given by 

1 for plane symmetric flow, 
l/y for axially symmetric flow, g(x9 Y) = 

Ly for plane symmetric flow, 
~ R ( R ,  Y)= { +Iy2 for axially symmetric flow (37) 

Following traditional methods we construct an algorithm for finding the free boundary for a 
given I: starting from an initial guess Ro for R, and ro for r, we solve the problem (16) and (17) 
(or (33) and (34)); then ro is modified into I" and Ro into R' such that the condition u' = Q is 
satisfied; finally the procedure is iterated until a satisfactory convergence is obtained. A proposed 
algorithm is as follows. 

Algorithm I 
1. Take an initial domain Ro sufficiently large containing R, and let ro = A;FY be the 

2. For n 2 1 find u" satisfying U" = up on AE, u" = uR on EF;-' and such that 
A 

assumed initial free boundary. 

gVu".Vwdxdy = , Iwdx + Jr"& Iwds (38) 
J * - 1  s AA;- 

for all test functions w with w = 0 on aR,, R\AF. 
3. Obtain a continuous curve r" = in R" - ' by solving the equation 

u"(x, Y) = Q. (39) 
Then let n = n + 1 and go to Step 2. If there exists no curv e in R" - ' satisfying (39), then we 
replace the domain R" - with a larger domain & - ' containing R" - and contained in 

and return to Step 2. n n - 2  
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The iteration procedure is continued until r" coincides with r" - within a prescribed error. It 
is to be noted that F; is always equal to Fa for n 2 1.  

Although Algorithm 1 consists of an iterative procedure, from the performed numerical 
experiments it has been observed that the first iteration yields a remarkably accurate approxima- 
tion to the location of the free boundary r, for each given 1. It is also to be noted that in solving 
the jet problem there is little need to obtain the exact location of the free boundary for 1 other 
than l*. 

An algorithm for determining the value of R*, which solves the jet problem in the truncated 
domain Q,,, R, is constructed as follows. 

Algorithm 2 

1. Assume the initial domain Q,, and choose 1' such that 1' - Q (or 1' - 2Q) is small enough 
for plane (or axially) symmetric flow. Algorithm 1 gives ual and rdl = A,, Fd1. Since 1' - Q 
(or 1' - 2Q) is assumed small enough, the x-co-ordinate xal of Adl (the starting point of I-,,) 
is positive. 

2. For n 2 2, with a given p > 0, define 1" by 

l " = l " - l + p ( p - ' - p - ' ) ,  (40) 

where = (du,, - I/dy)(2, 1) with 0 < 2 < x,. - Since x, -+ 0 as 1?1* we can take 2 = 0, 
and then inequality (8) or (35) indicates that {A"} is an increasing sequence. 

3. Using Algorithm 1, obtain uan and ran = A,,F,,. If x," (the x-co-ordinate of A,") 2 0 then 
let n = n + 1 and go to Step 2. Otherwise replace the value of p with a smaller value (say p )  
and return to Step 2. 

- 

The iteration is continued until 
I X P I  < E 

is satisfied for a prescribed tolerance E. Properties 1-4 summarized in Section 2 assure the 
convergence of Algorithm 2. 

Taking into account the remarks following Algorithm 1, for practical calculations of the jet 
problem we can propose a modified algorithm in which the application of Algorithm 1 in 
Algorithm 2 is replaced with solving (38) and (39) only once. Experimentally we have observed 
that the modified algorithm provides satisfactory results for a given p. 

The numerical treatment of the minimization problem of a functional over a variable domain 
by the method of variable finite elements requires the geometric variables to consider the effect of 
the variation of the ' The resulting discretized functional becomes a quadratic function 
of the nodal values for u but a complicated function of the geometric variables. The method of 
determining the minimizer of the discrete functional with respect to both nodal values and 
geometric variables is very involved. On the other hand the numerical solution of equation (38), in 
which the effect of the variation of the domain is taken into consideration, can be easily obtained 
by using the conventional finite element method. It is also to be noted that the iterative procedure 
for determining the value of 1* is much simpler in Algorithm 2 than that in Aitchison; since the 
former requires calculation of the velocity at only one point at each iteration while the latter 
needs to calculate the pressure in the whole flowfield. 

4. NUMERICAL EXAMPLES 

We apply Algorithm 2 described in the previous section to the plane (or axially) symmetric flows 
from the opening between semi-infinite straight (or conical) walls (Figure 2) and from a vessel with 
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Figure 2. Flow from the opening between semi-infinite straight walls 

Figure 3. Jet from a vessel with a funnel-shaped bottom 

a funnel-shaped bottom (Figure 3). In each case we focus our attention on determining the jet 
contraction coefficient C ,  which is defined as the ratio of the cross-sectional area of the jet to that 
of the opening. 

For the numerical computations the truncated initial domain Q p , R  is divided into a large 
number of quadrilateral elements by using the automatic mesh generation program described in 
Durocher and Gasper.I4 The initial domain a,,, was determined so as to have no significant 
effect on the flow after several experiments. The streamfunction u is approximated as usual by 
piecewise linear functions for the plane symmetric case, and for the axially symmetric case by 
quadratic functions since u -+ f Ay2 as x --f co. 

At each iteration (n 3 1) the location of the current free boundary r" is determined by finding 
the root (x;, y:) of the equation 

~ " ( x ,  Y) = Q (42) 
along the side of the master element using the isoparametric relation. The mesh for the iterated 
domain Q" is generated in such a way that only the y-co-ordinates of nodes placed below r" are 
scaled proportionally to the height y; and all the other co-ordinates are kept constant. The 
linkage structure between elements remains fixed. 

Expressions for the discrete approximation of (38) can be written in the form 

K'u"' ' = f"  for each n >, 0, (43) 
where K" is a sparse symmetric positive definite matrix, U" = {ul} are the nodal values and f" is the 
vector resulting from the integral over AA" and r". The set of linear equations (43) can be solved 
by using the band storage scheme and the Cholesky decomposition.' s, l6 
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4 .1 .  Flow from the opening between semi-infinite straight walls 

We consider the efflux of a plane jet from an opening in the vessel bounded by semi-infinite 
straight walls, as shown in Figure 3, assuming the flow to be symmetric with respect to the x-axis. 
The angle between the walls is an (0 < a d 2). For a = 1 the flow describes a jet issuing from a slot 
in the plane wall and the case a = 2 corresponds to Borda's mouthpiece. The analytic results for 
the contraction coefficient C are a~a i lab le :~  

where Y (x) is the logarithmic derivative of the gamma function. 
The results for a = 0,5, 1, 1.5 and 2 are given in Table I. The comparison between com- 

putational and theoretical results shows excellent agreement. In Table I1 the results for the axially 
symmetric flow from the truncated cone are tabulated and compared with those obtained by 
solving the Trefftz integral e q ~ a t i o n . ~  As compared with Table I, the contraction coefficients of 
axially symmetric flows are very close to those of plane symmetric flows, as asserted in G ~ r e v i c h . ~  

4.2. Flow from a vessel with a funnel-shaped bottom 

We consider the plane symmetric flow from a vessel with a funnel-shaped bottom and with an 
angle between the bottom and the x-axis of n/4 (Figure 3), and calculate the contraction 
coefficients C,  varying the ratio d ,  of the width (= 1) of the opening to that (= H) of the vessel. For 
this flow, von Mises calculated C, solving numerically the equations obtained by the hodograph 
m e t h ~ d . ~  The present results agree well with those of von Mises and are seen to approach that 
(=0.746) for the jet from the opening between semi-infinite planes as d, decreases (Table 111). 

Table I. Comparison between computational and theoretical values of con- 
traction coefficients for plane symmetric jet from an opening 

U 

0.5 1 13  2 

Present results 0.747 0614 0.541 0-507 
Theoretical results 0.746 0.611 0.537 0.500 

Table 11. Computed contraction coefficients for axially symmetric jet 

0.5 1 1.5 2 
~~~~~~~ 

Present results 0.748 0622 0.549 0-508 
Theoretical results 0.75" 0.60-0.62b - 0.500' 

a. Numerical results by Salamatov and Trefftz re~pectively.~ 
Theoretical result. 



222 H.-Y. LEE AND M-U. KIM 

Table 111. Contraction coefficients for various ratios (dp, plane symmetric; d A ,  

axially symmetric) of cross-sectional area of the opening to that of the vessel 

0.1 0.5 0.8 

Plane symmetric Present 0.7906 0.7520 0.7469 
Von Mises 0.789 0.752 0.747 

Axially symmetric Present 0.790 0 7 5 4  0 7 8 4  

For the axially symmetric flow we replace d ,  with dA which is the ratio of the cross-sectional 
area ( = n) of the opening to that ( = nH2) of the vessel. As also shown in Table 111, the contraction 
coefficients for axially symmetric flows are nearly identical to those for plane symmetric flows. 

5. CONCLUSIONS 

We have reduced the minimization problem of describing the jet flow to a variational inequality 
type of problem in the truncated domain. The variational inequality formulation gives a 
systematic numerical algorithm based on successive approximations, which can be implemented 
by using the finite element method. So far as comparison with other results is possible, the results 
by the present method compare excellently with those by other methods (theoretical or numeri- 
cal). It is to be noted that in the proposed algorithm the adjustment of the free boundary position 
can be carried out very simply and there do not appear to be any difficulties in determining the 
converged solution of the jet problem. 
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